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TABLE IY 

COMPARISON OF CALCULATED HYDRATION ENERGIES FOR Li ~ 

AND Be+ 2 USING ALTERNATIVE RADII FROM TABLE I FOR HELIUM 

TO DETERMINE T H E I R VAN DER WAALS RADII 

(a) me = 1.78 A; (b) rHe = 1.43 A; /u in kcal. mole"1 

— Anh (calcd.)(a) — A/*h (calcd.)(b) - ^ M h fexptl.) 

Li"1- 114 154 125.6 
Be*2 554 779 591 

Fluoride ion presents a special problem. The value 
for the free energy of hydrat ion tabulated by Noyes ap
pears to be consistent with the present model (Table 
I I I ) . This value, however, was calculated from the 
data for gaseous fluoride ion in the National Bureau of 
Standards Circular 500; more recent work12 shows 
fairly conclusively t ha t this entry is wrong. Revision 
leads to a free energy of hydration (on the present 
scale) of —98 kcal. m o l e - 1 for fluoride ion. This can
not be accounted for on the present model, since it is 
numerically greater than the self energy of the ion in 
vacuo. The discrepancy is made worse if we assume, 
as is probable for this anion on the evidence of its 
mobility and dielectric constant depression, a layer of 
partially immobilized water molecules around it. This 
would increase its self energy from the value of 1.6 kcal. 
shown in Table I I I to about 10 kcal. mole - 1 , making the 
calculated hydrat ion energy about —73 kcal. mole - 1 . 
Thus the free energy of aqueous fluoride ion appears to 
be between 17 and 25 kcal. m o l e - 1 lower than can be 
explained on the electrostatic model. A reasonable 
explanation of this could lie in the formation of several 
"hydrogen bonds" between the fluoride ion and the 
water molecules surrounding it. In other terms, the 
"proton affinity" of fluoride ion is high compared with 
the other halide ions. 

The striking success of the model in accounting for the 
hydrat ion energies of cations, including multiply 
charged ones, justifies the claim tha t the present 
method of calculating self energies of gaseous ions is a 
marked advance on the use of the crystal radii. 

Some Comments on the Model.—The transfer of the 
ion from the gas state to solution is envisaged as being 
carried out directly rather than through a discharge-
transfer-recharge process, since the lat ter is difficult to 
visualize for actual ions which can be "neutral ized" 
only by conversion to atoms, and raises some difficult 
problems about the solvation of electrons. The direct 
transfer really involves the question of the energy for 

(12) J. E. B. R a n d i e s , Trans. Faraday Soc, 52, 1573 (1956). 

Introduction 
The writer has recently shown1 t ha t it is possible to 

calculate the van der Waals radii of gaseous ions of the 
(1) R. H. S tokes , J. Am. C.hcm. Soc, 86, 979 (19fi4). 

moving the ion through the interfacial potential a t the 
water surface, as discussed by Randies.12 This term is 
zeV where V is the interfacial potential, a constant at 
constant temperature even though its actual value is 
still in doubt. A term with the necessary dependence 
on the charge of the ion has been introduced via the 
quant i ty zAF°n of eq. 9, which may be taken to include 
the interfacial potential term. This term appears only 
when separate ionic values are discussed, and may be 
thought of as a penalty for using quantities not deter
minable by direct experiment. I t vanishes when we 
consider either energies of electrically equivalent num
bers of cations and anions together, or energy differ
ences between equivalent amounts of ions of the same 
sign. 

While the model proposed gives a very satisfactory 
account of the free energy of hydration, it cannot be 
expected to deal adequately with the entropy. The 
entropy of the gaseous ion does not involve an elec
trostatic term and is fully calculable from the Sackur-
Tetrode equation; bu t t ha t of the aqueous ion will in
volve the change with temperature of several of the 
quantit ies in eq. 4. Only t ha t of e is known, and its 
contribution is probably the least important . One 
could of course estimate the changes in n or rTC with 
temperature needed to produce agreement, but this 
would not constitute an explanation of the entropy of 
hydration. For this more sensitive test, detailed con
sideration of the modes of motion of water molecules 
near the ion would be required in addition to the rela
tively crude electrostatic approximation for more re
mote molecules. Dr. L. G. Hepler is currently working 
on this problem and on t ha t of the free energy of trans
fer of ions between different solvents. 

The reduction in size of the ion on solution in water 
would appear to require a compression energy which 
has been disregarded in this paper. This question is 
discussed for the closely related case of the formation 
of an ionic crystal from gaseous ions in the following 
paper, and the answer suggested in tha t case is probably 
relevant, mutatis mutandis, to the present situation. 
In brief, the ions are not compressed; rather, as a neces
sary consequence of the virial theorem, they shrink in 
the wash. 

Acknowledgments.—The author is indebted to his 
colleagues in this depar tment and in the depar tment 
of organic chemistry for helpful discussions; in par
ticular to Drs. J. E. Banfield, N . V. Riggs, and L. G. 
Hepler (the latter a visitor from the Carnegie Inst i tute 
of Technology, Pit tsburgh, Pa.) . 

noble gas structure from data on the noble gases them
selves. Consideration of the electrostatic self energies 
of the gaseous ions calculated by treating the ion as a 
sphere of charge ze having the van der Waals radius rv 
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The self energies of gaseous ions, calculated from their van der Waals radii by the method of a previous paper, 
show a striking correlation with crystal lattice energies. For ions of the noble gas electronic structure, the 
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led to a very satisfactory quant i ta t ive account of the hy
dration energies of cations of charge + 1 , + 2, and + 3 , 
using a physically reasonable model for the aqueous ion. 

I t seemed likely tha t a similar approach to the lattice 
energy of crystals would be of value. The present 
paper describes some results which are of especial inter
est in tha t the lattice energy is found to be a simple 
function of the gaseous ion radii. Only one fixed param
eter is needed to give the lattice energies of a large 
class of crystals, without appeal to experimental data 
on the crystal structure or dimensions. 

Experimental Lattice Energies.—The lattice energy 
Ei. is denned as the energy change in the process 

gaseous ions at infinite separation > crystal, AH = .Er. (1) 

In some cases2 it has been possible to determine 
this energy change fairly directly by combining 
measurements of the heat of vaporization of the 
crystal into gaseous "molecules" (or ion pairs) with 
data for the dissociation energy of the "molecule" in 
the gas into free ions. More often, however, the lattice 
energy is obtained, in the case of halide salts, from a 
combination of data for: (a) the heat of formation of the 
crystal from its elements, (b) the vaporization of the 
metal to gaseous atoms, (c) the (spectroscopic) ioniza
tion potential of the metal , (d) the heat of dissociation 
of the halogen to gaseous atoms, (e) the electron affinity 
of the halogen atom. 

The greatest uncertainty in the calculation is usually 
that for process (e), though a large revision of the value 
for process (d) has been made for fluorine in the last 
decade or so. The electron affinities of the halogens 
are in fact often estimated from calculated crystal 
energies, but values so obtained are naturally subject to 
the assumption tha t the Madelung-Born-Mayer treat
ment of the lattice energy is final and definitive. Cubic-
ciotti3 has summarized the direct experimental deter
minations of the electron affinity, the methods used 
being: space charge, magnetron, electron impact, and 
surface ionization. Weighting these various measure
ments according to the estimated uncertainties which 
he tabulates, the following values are obtained, with 
uncertainties of ~ 2 kcal. mole - 1 . 

X(atom, g) > X - (g), AH6(X) (2) 
AH6(F) = -82.5 kcal. mole"1 

AH6(Cl) = -86.2 kcal. mole-1 

AH6(Br) = -81.7 kcal. mole"1 

AHe(I) = -73.6 kcal. mole^1 

These values have been combined with those for the 
processes (a), (b + c), and (d) above given in N.B.S.4 

Circular 500, except tha t for the process 

F2(g) s- 2F(g) 

the value AH0^ = + 3 7 . 5 kcal. mole" 1 has been 
adopted.5 Strictly speaking, of course, the lattice 
energy refers to process 1 carried out a t 00K., but the 
corrections are small, involving the zero-point energy 
of the crystal and the difference between the heat ca-

(2) L. Helmholz and J. E. Mayer, / . Chem. Phys., 2, 24,5 (1934); also L-
Brewer and E. Brackett, Chem. Rev., 61, 425 (1961). 

(3) D. Cubicciotti, J. Chem. Phys., 31, 1646 (1959). Since the compila
tion of Cubicciotti's data, direct spectroscopic measurements of the energy 
required to liberate an electron from gaseous halide ions have been reported 
by R. S. Berry and C. W. Reimann (ibid., 38, 1540 (1963)). The 
gaseous ions were produced in shock-heated vapors in sufficient quan
tity to make direct measurement of the absorption spectrum of the ion 
possible. Their values for AHe(X)/kcal. in process 2 are F, —79.5; Cl, 
— 83.3; Br, —77.5; I, —70.6, with estimated uncertainties less than 0.1 
kcai. The use of these data would alter the experimental lattice energies 
in Table I by 2-4 kcal. per mole of halide ion, but would not seriously affect 
the conclusions. 

(4) F. I). Rossini, el el., "Selected Values of Chemical Thermodynamic 
Properties," National Bureau of Standards Circular 500, U. S. Govt. Print
ing Office, Washington, D. C , 1952. 

(5) J. C. Slater, Phys. Rev., 36, 57 (1930). 

TABLE I 

RELATION BETWEEN LATTICE ENERGY AND SELF ENERGY OF 

GASEOUS IONS" 

(a) 

Salt 

LiF 
LiCl 
LiBr 
LiI 
NaF 
NaCl 
NaBr 
NaI 
KF 
KCl 
KBr 
KI 
RbF 
RbCl 
RbBr 
RbI 
CsF 
CsCl 
CsBr 
CsI 

(b) 

-£ L (expt l . ) 

245.6 
203.4 
191.6 
179.6 
218.4 
187.0 
177.2 
166.7 
194.0 
170.1 
161.8 
153.3 
184.1 
162.1 
154.4 
146.8 
173.4 
156.4 
149.4 
142.5 

( C ) 

S£8
v(gas) 

232.7 
219.4 
217.9 
210.8 
209.8 
196.5 
195.0 
187.9 
186.3 
173.0 
171.5 
164.4 
179.2 
165.9 
164.4 
157.3 
170.1 
156.8 
155.3 
148.2 

(d) 
nv/riv 

(gas) 

1.676 
1.977 
2.018 
2.237 
1.412 
1.664 
1.700 
1.887 
1.142 
1.346 
1.374 
1.525 
1.060 
1.247 
1.274 
1.413 
0.955 
1.126 
1.150 
1.277 

(e) 

(calcd., eq. 7) 

204.5 
192.6 
180.0 

186.4 
177.6 
165.8 

167.7 
162.2 
151.3 

162.1 
157.6 
147.0 

154.9 
151.6 
141.3 

Mean S 

(0 

S, % 

+ 0 . 5 

+ .5 
+ -2 

- 0 . 3 

+ .2 
- .5 

- 1 . 4 
+ 0 . 3 
- 1 . 3 

0.0 
+ 2 . 1 
+ 0 . 1 

- 1 . 0 
+ 1.5 
- 0 . 8 

± 0 . 7 % 

Chlorides, a = 0.092 A. -1; bromides and iodides, a = 0.150 A. 

BeF2 

BeCl2 

BeBr2 

BeI2 

MgF2 

MgCl2 

MgBr2 

MgI2 

CaF2 

CaCl2 

CaBr2 

CaI2 

SrF2 

SrCl2 

SrBr2 

SrI2 

BaF2 

BaCl2 

BaBr2 

BaI2 

AlF3 

AlCU 
AlBr3 

AlI3 

ScCl3 

ScBr3 

YCl3 

YI3 

LaCl3 

LaI3 

839 
720 
692 
665 
700 
599 
575 
547 
628 
537 
514 
491 
592 
509 
488 
463 
557 
485 
466 
439 

1415 
1289 
1267 
1232 
1163 
l l30 
1076 
1009 
1016 
944 

973 
946 
943 
929 
737 
710 
707 
693 
623 
596 
593 
579 
583 
556 
553 
539 
543 
516 
513 
499 

1689 
1649 
1645 
1623 
1346 
1342 
1230 
1204 
1131 
1105 

2.297 
2.710 
2.765 
3.066 
1.618 
1.908 
1.947 
2.159 
1.290 
1.522 
1.553 
1.722 
1.175 
1.386 
1.414 
1.568 
1.059 
1.250 
1.275 
1.414 
1.825 
2.155 
2.196 
2.435 
1.692 
1.730 
1.518 
1.720 
1.370 
1.551 

719 
709 
655 

590 
581 
539 

527 
520 
483 

505 
498 
464 

483 
476 
444 

1304 
1287 
1194 
1139 
1124 
1075 

989 
1020 
940 

M e a n a 

- 0 . 1 
+ 2 . 5 
- 1 . 5 

- 1 . 4 
+ 1.0 
- 1 . 5 

- 1 . 9 
+ 1.2 
+ 1.6 

- 0 . 8 
+ 2 . 0 
+ 0 . 2 

- 0 . 4 
+ 2 . 2 
+ 1.2 

+ 1.1 
+ 1.0 
- 2 . 9 
- 2 . 1 
- 0 . 5 
- 0 . 1 
- 2 . 0 
+ 0 . 4 
- 0 . 4 

± 1 . 2 5 % 

For all these chlorides, bromides, and iodides, a = 0.200 A. _ I 

" All energies in kcal. mole"1; Z.ES
V calculated from gaseous ion 

van der Waals radii of reference 1; 1 = cation, 2 = anion. 

pacities of the crystal and the gaseous ions. Examina
tion of Table Vl of reference 3 shows tha t the errors in
troduced by identifying the lattice energy a t 298°K. 
with tha t at 0 0K. seldom exceed 1 kcal. m o l e - 1 ; this is 
less than the uncertainty in the electron affinities. The 
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Fig. 1.—Relation between lattice energy of crystals and self 
energy of gaseous ions for alkali halides. [nv, r2

v van der Waals 
radii of gaseous cation and anion, from reference 1. The point (a 
cross) for CsF is plotted against r-Chi1 instead of r2

v/r{", since in this 
case the cation is larger than the anion ] 
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Fig. 2.—Relation between lattice energy of crystals and self 
energy of gaseous ions for halides of di- and trivalent cations of 
the noble gas structure. 

lattice energies at 2980K. are listed in Table I (column 
b) for all the halides of uni-, di-, and trivalent cations of 
the noble gas structure for which the experimental data 
are available. 

Relation between Lattice Energies and Self Energies 
of Gaseous Ions.—The electrostatic self energy of 1 
mole of gaseous ions of charge ze is 

E, =4f — A7zV 
2 

166.0z2 

kcal. mole ' A. (3) 

where rv is the appropriate "equivalent electrostatic 
radius." In a preceding paper1 it has been shown that 
the appropriate radius is the van der Waals radius of 
the gaseous ion, which is calculable from that of the 
isoelectronic noble gas atom with the aid of known 
quantum mechanical screening constants. The value 
of this characteristic property of the gaseous ion is 
thus not in any way dependent on measurements of in-
ternuclear distances in the ionic crystals considered 
here. The van der Waals radii and the corresponding 
electrostatic self energies are listed in reference 1, ex
cept for lithium and beryllium ions. For these two 
ions the method of reference 1 does not lead to unequiv
ocal values for the van der Waals radii. In the pres
ent paper, a radius of 1.139 A. has been arbitrarily as
signed to the lithium ion; from this a value of (1.139 X 
2.7/3.7) = 0.831 A. is deduced for the beryllium ion 
using Slater's5 screening constant for the ls-electrons. 

The electrostatic self energy of the gaseous ions cor
responding to 1 mole of crystal, 2£ s , is given in Table 
I, column c. Column d gives the radius ratio of the 
gaseous ions, r2

v
/V1

v, where subscript 1 denotes the 
cation and subscript 2 the anion. It is immediately 
apparent that as this ratio approaches unity the self 
energy of the gaseous ions becomes equal to the crystal 
lattice energy, irrespective of crystal structure or valency 
type. 

In Fig. 1 and 2 the quantity (2£ s + £L) is plotted 
against the radius ratio. Fluorides show anomalous 
behavior, but for the other halides a good linear rela
tionship exists. For the 3:1 and 2:1 salts, a single line 
fits all the chlorides, bromides, and iodides of each class, 
while for the alkali halides the bromides and iodides fit a 
single line, and the chlorides require a line of lower slope. 
I t follows that for each of these classes of salts the lat
tice energy is given by the equation 

EL = - 2 £ . - + / 3 ' -(S "') (4) 

where (S has the values 
MX 3 0 = 297 kcal. mole^1 

MCl2, MBr2, MI2 & = 132 kcal. mole"1 

MCl / 3 = 1 5 kcal. mole"1 

MBr, MI /3 = 25 kcal. mole"1 

Discussion 
The first fact to be explained is the accurate equality 

of the (negative) lattice energy and the gaseous ion 
self-energy for the case of crystals where the cation and 
anion have equal gaseous van der Waals radii. This is 
evident from Fig. 1 and 2; it is perhaps open to a little 
doubt in the case of fluorides, but even with these the 
amount by which the intercept at r2

v/ riv = 1 falls below 
zero is only 1 or 2% of the lattice energy. A simple 
explanation suggests itself if we examine the detailed 
electron density contours of ions in the sodium chloride 
crystal published, in 1955, by Witte and Wolfel.6 These 
workers succeeded by a refined X-ray technique in ob
taining contours down to the low density of 0.2 elec
tron A. - 2 ; Fig. 3a is a copy of this lowest contour. It 
is evident that the outer regions of the electron distri
butions of the ions are considerably distorted from 
spherical shape. It would be quite reasonable to say 
that if the ions had been of equal size, they would have 

(6) H. Witte and E. Wolfel, Z. physik. Chern'. (Frankfurt), S, 296 (1955) 
(especially p. 317). 
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distorted into polyhedra in complete mutual contact ; 
this picture is confirmed by the fact tha t the molar 
volume of all the crystals considered here is less than 
(or in one or two cases practically equal to) the volume 
of the gaseous ions calculated from their van der Waals 
radii. Now the model we are using for the gaseous ion 
is essentially tha t of a conducting sphere, and the cor
responding model in the crystal would be one of such 
spheres deformed into polyhedra by the crystal field. 
For spheres of equal size, complete mutual contact 
could readily occur; but of course the "conductors" 
cannot discharge each other because of the quantal 
stability of their closed (sp) shells. Nevertheless, the 
classical electrostatic energy of such a system is zero. 
This is readily seen by considering the general expres
sion for the electrostatic energy of a system of charged 
conductors 

E=lfv™V (5) 

where R is the electrical field intensity and the integral 
is taken over all the space V outside the conductors. If 
the crystal is regarded as a system of conductors in 
contact, with no voids between them, there is no space 
outside the conductors, and the integral in 5 is therefore 
zero. This argument of course neglects the ions a t the 
surface of the crystal, the contribution of which to the 
lattice energy can be made negligible by considering a 
large enough crystal. (Incidentally, this approach 
offers an immediate explanation of the enhanced solu
bility of very small crystals.) I t thus appears tha t the 
lattice energy for the hypothetical case where the cation 
and anion have exactly equal van der Waals radii is 
simply the negative of the self energy of the gaseous 
ions and can be accurately calculated without appeal to 
data on the crystal, such as its structure, lattice param
eters, compressibility, etc. This strange situation 
does not of course imply tha t the established Born-
Mayer-Madelung method is wrong, but does indicate 
tha t it may be unnecessarily complicated. The writer 
has never been convinced tha t it is correct to calculate 
the contribution of the more remote ions to the Made-
lung term in the lattice energy using a dielectric con
s tant of unity, for the lines of force from such ions to the 
central lattice site have to pass through other ions, and 
these are just as much entitled to have a dielectric con
stant as are other forms of mat te r ; their refractive index 
is certainly not unity. Perhaps then the relatively large 
overlap, dipole, and quadrupole terms of the Born-
Mayer t rea tment are merely a rather difficult way of 
compensating for the absence of a dielectric constant in 
the Madelung term. 

The present approach thus seems to account for the 
whole of the lattice energy as electrostatic energy when 
the ions are of equal size. I t is tempting to generalize 
this conclusion to the case of ions of unequal size, and 
the values of the coefficient /3 in eq. 4 give a hint as to 
how this might be done. Considering the chlorides, 
bromides, and iodides of the bivalent and trivalent 
metals, the slopes of the lines in Fig. 2 are precisely pro
portional to the squares of the cation valency; we can 
write 

0 = C1(Nz1VfZ) (6) 

where a is a parameter with the dimensions of a recipro
cal length, having the fixed value of 0.2 A.""1 for all 
these 23 salts. Equation 4 may now be written 

Let us suppose tha t the ions are deformed by the crystal 
field into similar polyhedra with linear dimensions d\ 
and di, and tha t these dimensions are proportional to 

O 
O 
G 

O 
[ N o * ) 

G 
Q 
O 

Cf 
O2 

Na' 

• 

a b 

Fig. 3a.—0.2 electron density contours in sodium chloride (after 
Witte and Wolfel6). 

Fig. 3b.—Idealized form of Fig. 3a used as electrostatic model. 

the radii of the free ions, so tha t 7 becomes 

E1, + ZE." = ̂  (^)(J1 - J2) (8) 

The significance of eq. 8 for an electrostatic model is 
apparent from Fig. 3b, where the actual e'ectron den
sity contours have been idealized to cubes, with the 
larger cubes in contact along their edges. (In crystals 
with higher cation coordination numbers than 6, the 
polyhedra will not be cubes, but this does not mat ter 
provided that the cation and anion polyhedra are geo
metrically similar.) The cation and the adjacent faces 
of its nearest-neighbor anions thus form a "condenser," 
the capacity of which will to a good approximation be a 
constant multiple of tha t of a spherical condenser of 
radii di and d^. We therefore write its capacity as 

c = Ai - IT,) (9) 

where 7 is a dimensionless constant. Since the charge 
is Zie on the cation and — Z\e distributed over the ad
jacent faces of the surrounding anions, the electrostatic 
energy per mole is 

so tha t we identify the constant 7 of 9 with \/{adi) of 8. 
I t is by no means easy to see why 7, which plays the 
role of a dielectric constant (multiplied by a constant 
geometrical shape factor), should take the form 7 = 1 / 
{adz), a relation which implies tha t the effective di
electric constant of the region between the polyhedral 
limits described around the ions is inversely proportional 
to the size of the anion. The fact remains, however, 
tha t if we make this simple assumption, all t ha t is neces
sary to give with an accuracy of ± 1 . 2 % the lattice 
energies of the 23 bivalent and trivalent metal salts 
mentioned is the single parameter a = 0.2 A . - 1 . This 
is a useful alternative to the standard t reatments which 
require data on the crystal structure, internuclear dis
tances, and compressibilities to give results of scarcely 
greater accuracy. 

The value of a becomes 0.150 A . - 1 for the alkali bro
mides and iodides, and 0.092 A.^1 for the alkali chlo
rides. The lattice energies calculated by equations are 
given in column d of Table I. Though the alkali fluo
rides could be fairly well dealt with by a small negative 
value of a, the accuracy would be lower than tha t for 
the other halides, and Fig. 2 indicates tha t the model is 
unsatisfactory for the fluorides. I t appears to be most 
appropriate for highly polarizable anions, and to be
come more general as the cation charge increases, in 
tha t one value of a serves for all the chlorides, bromides, 
and iodides of the multivalent cations, while a change 
in a is necessary for the univalent cations. 

Since the parameter a gives good values of the crystal 
energy, it follows tha t given a and data for the elements 
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only we can calculate the heats of formation of the salts; 
this is a worthwhile contribution to the theory of chemi
cal bonding. I t must be noted, however, t ha t where 
the cations are multiply charged, the crystal lattice 
energy can be several times the heat of formation; con
sequently the 1.2% average error in the lattice energy is 
considerably magnified if we use the theory to calculate 
heats of formation from the elements in their usual 
standard states. This suggests tha t the free gaseous 
atoms might be a more practical start ing point for con
sidering energies of compounds, ra ther than such highly 
unstable ionic species as gaseous Al+ 3 . As might be 
anticipated, the electrostatic self energies of noble gas 
cations calculated as proposed by the writer1 are not 
greatly different from the total ionization potentials of 
the gaseous atoms when losing all the electrons outside 
their closed (sp) shells. 

The possibilities of the present t rea tment were 
clearly envisaged by Onsager7 in 1939; I am indebted 
to a referee for drawing my at tention to this important 
paper. Onsager points out tha t the "proper energy" 
of an assembly of "ha rd" ions is a minimum when |the 
surface field intensities of cation and anion are equal, 
and considers the lattice energy in relation to the self 
energy of gaseous ions. The principal new feature of 
the present paper is the recognition tha t the ion in vacuo 
may reasonably be treated as having a different size 
and shape from those it has in the crystal, so t ha t the 
self energy of the gaseous ion is no longer tha t of a 
charged sphere of the crystal ionic radius, bu t tha t of a 
larger sphere. 

Conclusion 

The proposed electrostatic model of ions in the crys
tal deformed from spheres to polyhedra is remarkably 
successful, in tha t it makes possible the calculation of 
the lattice energies of the chlorides, bromides, and io
dides of all the metal cations of the noble gas s tructure 
from only three values of the parameter a, with an ac
curacy averaging ± 1%; and it requires no information 
about the crystal, the main contribution to the lattice 
energy coming from the loss of the self energy of the 
gaseous ions which is calculable a priori from data on 
the noble gas atoms only. 

A curious feature of the present t rea tment is tha t it 
is apparent ly unnecessary to make a separate allowance 
for the energy required to compress and deform the 
ions. In the hypothetical case where the cations are 
the same size as the anions, the model requires only 
tha t in the final crystal they should deform into com
plete mutual contact ; provided this occurs it is im
material to the energy calculation whether they also 

(7) L. Onsager, J. Phys. Chem., 43, 189 (1939). 

undergo a change in volume. In this model we are 
considering a set of bodies under coulomb interactions, 
and we find tha t we can correctly calculate the total 
energy of the system by considering only the coulombic 
energy. If we shift our energy zero so as to reckon 
from the infinitely dilute gaseous ions as zero, the total 
energy of an ion in the crystal is negative, W — —E,v. 
According to the virial theorem, the mean potential 
energy is 2II7, and the mean kinetic energy is — W = 
+-Ev

s . Now where is this kinetic energy? I t is 
certainly not in the zero-point vibrational energy of the 
lattice, for this is only a fraction of a kilocalorie per 
mole. I t must therefore be in the electrons within the 
ions. To increase the kinetic energy of an electron, it 
is necessary to reduce the space in which it moves. In 
the present case this means tha t the ions have to deform 
and become smaller, in order tha t the kinetic energy of 
the electrons shall remain equal and opposite to the total 
energy of the system. The final size and shape of the 
ions is thus determined by the condition tha t the in
crease in the kinetic energy of their electrons should be 
equal and opposite to the loss in total energy, which can 
be calculated from the electrostatic model. The ap
propriate quantum theoretical calculations to determine 
the final crystal dimensions would be prohibitively diffi
cult, a t least to the writer, bu t the calculation of the 
total energy change is quite elementary by the methods 
used here. The conclusion is t ha t the energy of com
pression and deformation does not have to be taken into 
account provided that , as here, we can calculate the 
total energy of the initial and final states from electro
static considerations. The compressibility of the crys
tal under an external applied pressure should be similar 
to tha t of the corresponding noble gases when the lat ter 
are under such pressure tha t the ratio 

F80HdAv3 (inert gas) 

is the same as the ratio 

V,ohd/(rivi + r2
v3) (ionic crystal) 

Unfortunately the compressibility data for the solid 
noble gases do not extend to high enough compressions 
to make a direct comparison possible, but if the compres
sibility of solid argon, known up to 4000 atm., is plotted 
against V/rY

3, the point for potassium chloride a t ordi
nary pressure falls on a natural extrapolation of the 
curve. 
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